

Research Report

Energy Efficiency Retrofits for Commercial and Public Buildings

Office, Educational, Retail, and Other Key Segments and the Effects of Performance Contracting, ESCOs, LEED, and Energy Star

NOTE: This document is a free excerpt of a larger research report. If you are interested in purchasing the full report, please contact Pike Research at <u>sales@pikeresearch.com</u>.

Published 2Q 2009

Levin Nock, Ph.D. Industry Analyst

Clint Wheelock Managing Director

Section 1 **EXECUTIVE SUMMARY**

The best-funded opportunities for retrofits today are major upgrades in institutional buildings, especially in federal buildings. This market, already strong because of federal policy mandates, received a significant boost from the American Recovery and Reinvestment Act of 2009 (ARRA). Growth will be focused in the 16 existing Super ESPCs (Energy Saving Performance Contracts) and with businesses that work with the contract holders. The institutional market is booming now, and activity initiated in the next few vears will continue through 2013 and beyond. However, federal non-industrial buildings comprise a small fraction of all existing commercial building space. If future federal legislation provides major funding to retrofit state and local educational buildings, on the order of tens of billions of dollars per year for several years, then the institutional market will continue its current boom. But without major funding at the state and local levels, the institutional market growth in major retrofits will start to level off by 2013.

The largest potential for long term, sustained growth in commercial building retrofits, is in the private/corporate commercial space. Although relatively small at present, this market will experience strong growth through 2013 and for many years beyond. Compared to conventional space, high performance green building space is vacant less often. When vacant, it fills more quickly, often at premium prices. Because of this, owners of empty commercial buildings are adopting green retrofits as a market differentiator. Unlike government policies that come and go, this market driver will fuel steady momentum until most commercial building space has been retrofitted for energy efficiency and also for other measures of building performance such as thermal comfort. While technologies developed for the institutional market can be easily transferred to the private sector. different soft skills and financial models are needed to promote retrofits within the various non-institutional market niches.

There are two fundamental perspectives on the market for energy efficiency retrofits in commercial buildings. In a narrow view, the purpose of retrofits is to conserve energy, so the work should be funded by future savings on energy expenditures. In this view, the federal market may grow toward market saturation within a few years, while other institutional markets stagnate (even with the federal stimulus), and the corporate market has a time horizon too short to effect major improvements in energy usage. Although there are opportunities for operational and maintenance improvements, and minor hardware upgrades, the market will grow slowly, until a national carbon trading system and/or extreme energy price inflation create a radical shift. The business model for these retrofits works well in locations with above-average energy prices, but not in other locations.

In a broad view, energy efficiency is one component of a comprehensive program to make buildings more suitable for the activities of their occupants. In this view, retrofits of higher cost can sometimes be financed by the substantially increased productivity of healthier. happier occupants----3% to 25% increase for office workers, and up to 15% higher retail sales. In some market segments, the relatively minor cost saving on utilities is a welcome side effect, rather than a primary purpose. Although this perspective is rare, it can support a broader market for retrofits today, without waiting for carbon trading or future increases in energy prices. The broad view includes not only occupant productivity, but green branding. Energy Star Buildings and Leadership in Energy and Environmental Design (LEED) are two brands that are expanding very rapidly, with more and more studies documenting the market differentiation advantages of certified buildings.

on may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the Research LLC.

Building owners and equipment/service providers who subscribe to the narrow view may find it difficult to create compelling business cases for energy efficiency retrofits, and to keep the market expanding through 2013. However, those who adopt the broad view, and find the partners and business models necessary for comprehensive solutions, will find abundant opportunities for growth. Companies that fit their products into comprehensive solutions can rise above the 'green clutter' of information overload, and secure a seat at the initial design table where integrated design occurs best.

Energy efficiency in existing buildings presents a challenge at the forefront of national and global security. Support for energy efficiency retrofits, from public policy and from the market, is growing and changing to reflect this prominent position.

There are numerous market drivers in this field, and plenty of work to be done. However, the actual market for energy efficiency retrofits is relatively small compared to its potential, because of market barriers within various niches of the commercial real estate market. Successful public policies and marketing strategies for energy efficiency retrofits will address the barriers in each niche appropriately.

The commercial real estate market can be divided into segments based on building application and ownership. The primary applications of retail, offices. warehousing/storage, education, and lodging together account for 75% of the floor space of existing buildings. Each of these segments can be further divided by ownership: private owner occupied (60%), private leased (24%), public (11%), and unoccupied. Another division involves location: the market is significantly affected by state and local geographic climate, energy prices, regulations, and incentives. As if these divisions were not enough, the scale of control varies widely across each market segment. A few large, centralized players control a substantial portion of the total floor space at one end of a spectrum, while myriad small, local players each control a relatively small portion.

This report examines some of the primary challenges in each market segment, presents best practices that are addressing these barriers successfully, and predicts the market growth of the next five years.

Table 1.1 describes the order-of-magnitude scope of the national market for energy efficiency retrofits of existing commercial buildings. Each year, the money spent on new construction is comparable to the money spent on energy in existing buildings. Each year, the total new space constructed is comparable to the total existing space renovated. This space (newly constructed and newly renovated) is small compared to the total existing space, which is equivalent to more than 30 years of new construction. One third to one half of the existing space is clearly due for a major retrofit. The other half to two thirds would benefit from minor upgrades now, and major retrofits beyond the five-year scope of this report. In the narrow terms of cost savings from reduced energy costs, on average. the cost saved by minor retrofits is an insignificant portion of most operational budgets, while the cost of major retrofits must be recovered over many years. If all buildings received one comprehensive green retrofit over the next 20 years, the average annual market for retrofit work would have a value of roughly \$60 billion treating 3 billion square feet (BSF). Although some of this work will blend into current renovation practices (such as periodic retail upgrades), much of the work will be new business, beyond existing practices.

on may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the Research LLC.

Table 1.1:	Overview of Primary Factors in the Commercial Building Retrofit Market
------------	--

U.S. Commercial Buildings, New and Existing	Order of Magnitude
Annual new construction, cost	\$300 billion
Annual energy used in buildings, cost	\$200 billion
Annual new construction, space	2 BSF
Annual major renovation, space	2 BSF
Existing buildings, space	70 BSF
Examples of annual total cost per occupant (mostly labor)	\$300 /SF office \$100 /SF public K-12
Annual average energy cost (<5% of budget for each building)	\$3/SF
Cost of simple energy efficiency retrofit to save 10% energy	\$1/SF or less
Cost of substantial green retrofit to save 40% energy and enhance occupant performance	\$10 to \$30/SF
Cost of typical major renovation	\$40/SF
Total cost to upgrade the third of all commercial space that is most due for a comprehensive green retrofit.*	\$400 billion
% of national energy consumed and CO_2 emitted in the U.S., by commercial buildings	20%
% of national CO_2 emissions in the U.S. that need to disappear within 5 to 40 years	80%
Five states that together account for 40% of national energy expenditures in commercial buildings	CA, FL, NJ, NY, TX

(Source: Pike Research)

* Note: Although energy efficiency retrofits are a significant portion of a comprehensive green retrofit, it is unclear how the energy efficiency work could be financed alone, unless it is incorporated into comprehensive retrofits providing broader benefits.

If a carbon trading system raises the average price of electricity by 40%, to its inflationadjusted 50-year high, and the credits are auctioned, this will yield \$70 billion in annual revenue, which could be plowed back into energy efficiency measures. This money could provide the funding to retrofit all commercial building space (starting with the third in greatest need, then treating the other two thirds in turn) over the next 20 years, saving 40% of today's building energy use when complete. Smaller increases in energy prices will produce proportionately less revenue.

A program, phased in over five years, to upgrade maintenance into the equivalent of retro commissioning every five years, will have a return on investment (ROI) above 50% the first year, increasing to more than 100% after a few years as a larger portion of all buildings are included. From a marketing perspective, such a program is likely to include LEED and Energy Star Portfolio Manager, the two largest brands in the industry at present. A 50% tax incentive policy for a few years (with a total national value of \$1 billion to \$2 billion) could help this industry expand into all commercial space, by returning the complete upfront cost within the single-year time frame of many operational budgets.

In summary, the market for major energy efficiency retrofits:

• Under present pricing, will only grow rapidly if energy efficiency is promoted as one part of a comprehensive, well-branded program to increase occupant performance.

© 2009 Pike Research LLC.

All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.

- Will grow rapidly if a carbon trading system increases the real price of electricity by 40%, and reinvests the extra revenue from commercial building electricity bills into retrofits.
- Will grow rapidly, if the real price of electricity increases by 100% or more.
- Needs to expand to approximately \$60 billion annual revenue within a few years, to support carbon-reduction goals.

A program for periodic minor energy efficiency upgrades (i.e., enhanced maintenance) will have an initial ROI above 50%, and after a few years, an ongoing ROI above 100%. This is true at various scales, from a few buildings to the entire national building stock. A federal one-time investment of less than \$2B in incentives could establish the industry, by covering the initial start-up costs that are often higher than existing annual utility budgets. Even without tax incentives, enhanced maintenance can be very cost-effective on a carefully selected subset of buildings,

There is debate in climate change science as to the exact timeframe when an 80% reduction in GHG emissions is needed. This report is based on achieving this milestone in the 2030 to 2050 timeframe. If the entire reduction is needed within the next 2 to 5 years, as some reputable scientists maintain, then the measures proposed in this report would need to be multiplied by a factor of 4 to 10. In other words, the annual market for major retrofits would be in the range of \$240 billion to \$600 billion. Funding at this level might make sense from a policy perspective, if global climate change is deemed a primary threat to national security.

The body of this report uses the definition of "commercial' of the Commercial Building Energy Consumption Survey of the U.S. Energy Information Administration (EIA).

"Commercial buildings include all buildings in which at least half of the floor space is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship."

http://www.eia.doe.gov/emeu/cbecs/

In other words, public buildings are included, but multifamily residential buildings are not. This definition differs from common usage in some sectors of the real estate market.

on may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the Research LLC.

Section 8

TABLE OF CONTENTS

Section 1	.1
Executive Summary	.1
Section 2	. 5
Market Issues	. 5
2.1 Introduction	.6
2.2 Demand Drivers	.7
2.2.1 Holistic benefits of green building: opportunities in a down market	.7
2.2.1.1 Employee productivity	.7
2.2.1.2 Intangible branding	.7
2.2.2 Awareness	. 8
2.2.2.1 Split incentive: individual vs. society and planet	10
2.2.3 Certification	10
2.2.3.1 LEED	10
2.2.3.2 Energy Star Portfolio Manager	11
2.2.3.3 ISO 14001 (minor)	12
2.2.4 2030 Challenge	12
2.2.5 Legislative and regulatory incentives and drivers	13
2.2.5.1 Indirect benefits	13
2.2.5.2 Decoupling utility profits	13
2.2.5.3 American Reinvestment and Recovery Act of 2009	14
2.2.5.4 Reinvestment and Recovery Act, part II	14
2.2.5.4.1. The Two-year, Nine-Million-Jobs Investment Plan	14
2.2.5.5 Tax credits and incentives	15
2.2.5.6 Regulations	15
2.2.5.7 Energy efficiency portfolios	15
2.2.5.8 Carbon cap and trade	15
2.2.6 Appraisal and valuation	16
2.3 Market Segmentation	17
2.3.1 Introduction	17
2.3.1.1 Centralized vs. Local control in each Segment	17
2.3.2 Market segments, building activity, and ownership	17
2.3.2.1 Introduction	17
2.3.2.2 Office	19
2.3.2.3 Education	19
2.3.2.3.1. K-12	21
2.3.2.3.2. CHPS	22
2.3.2.3.3. LEED for schools	22
2.3.2.3.4. Colleges and universities	22
2.3.2.3.5. Challenges	23
2.3.2.3.6. Opportunities	23
2.3.2.4 Warehouse and storage	25
2.3.2.5 Retail	25
2.3.2.6 Lodging	26
2.3.2.7 Healthcare	26
2.3.2.8 Food sales and services	27
2.3.3 Market segments, ownership	27
2.3.3.1 Credit availability	27
2.3.3.2 Private owner occupied	28

^{© 2009} Pike Research LLC. All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.

2.3.3.3	Private Lease	28
2.3.3.4	Public	29
2.3.3.5	Federal government	30
2.3.3.6	State and local government-owned facilities	32
2.3.4 Mark	ket segments, building size	33
2.3.5 Mark	ket segments, building age	33
2.3.6 Mark	ket segments, regional	35
2.3.7 Sum	mary	39
2.4 Energy l	Efficiency vs. Comprehensive Green Update	44
2.4.1 Prod	luctivity	44
Section 3		47
Energy Efficiency	y Products and Services	47
3.1 Financia	al	47
3.1.1 Perfe	ormance contracting	47
3.1.1.1	ESCO	48
3.1.2 Purc	hase-upgrade-leaseback	48
3.1.3 Fina	ncing through property taxes and utility bills	48
3.1.4 Self-	financing supply chains / alternative currencies	49
3.2 Cultural		49
3.2.1 Chai	nging habits	49
3.2.2 Popu	Jarity: energy efficiency vs. renewable energy	50
3.3 Software	9	50
3.4 Hardwai	re	51
3.4.1 Shel	I and lighting	54
3.4.1.1	Greenroot	55
3.4.2 HVA	U	55
3.4.3 IEQ		50
3.5 HOIISUC	Approacn	57
3.5.1 Build	ang commissioning	57
3.5.2 INTEG	jraled Design	57 57
3.6 Durabilit	у	57 50
Section 4	ictry Playore	55 50
A 1 Introduc	tion	50
	uun.	50
4.3 Davlight	ing and Energy	50
431 Kalw	all	60
4.3.2 Sout	hwall	61
4.3.3 Sund	antics	61
4.4 FSCO	sprioe	61
441 Johr	ison Controls	61
442 Siem	iens	62
4.5 Class G	reen Capital	62
Section 5	• • • F	63
Market Forecasts		63
5.1 Carbon	Cap and Trade	63
5.2 ESCO N	/arket	63
5.3 Buildina	Certification	65
5.4 Potentia	I Energy Efficiency Retrofit Market, Major and Minor	66
5.4.1 Intro	duction and methods	66
5.4.2 Minc	or upgrades	69
5.4.2.1	Results	69
5.4.2.2	Minor upgrades, analysis	71

© 2009 Pike Research LLC. All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.

5.4.2.3	Conclusion, minor Upgrades	72
5.4.3 M	ajor upgrades	73
5.4.3.1	Results, major upgrades	73
5.4.3.2	Major upgrades, analysis	75
5.4.4 Tr	aining	76
5.5 Marke	et Size	76
5.5.1 Ne	ew green construction	76
5.5.2 Er	hergy efficiency retrofits	76
5.5.3 M	arket Forecast Scenarios	77
5.5.3.1	Minor Upgrade Scenario	78
5.5.3.2	Major Renovation Scenario	80
5.5.3.3	Federal Legislation	81
Section 6		82
Company Dire	ctory	82
ESCOs		82
Companies Int	erviewed for this Report	85
Section 7		87
Acronym and A	Abbreviation List	87
Section 8		89
Table of Conte	nts	89
Section 9		92
Table of Charts	and Tables	92
Section 10		93
Scope of Study	/	93
Sources and N	ethodology	93

Section 9

TABLE OF CHARTS AND TABLES

Table 1.1:	Overview of Primary Factors in the Commercial Building Retrofit Market	3
Table 2.1:	Summary of Key Facts and Figures for the Commercial Building Retrofit Market	6
Table 2.2:	Relative Importance of Factors Influencing Adoption of Sustainable Building Practices	8
Chart 2.3:	U.S. Retail Gasoline Prices, 1990–2008	9
Chart 2.4:	Average U.S. Electricity Price per kWh Including Taxes: 1960-2007	10
Chart 2.5:	Commercial Space by Building Activity	18
Chart 2.6:	Energy Use by Commercial Buildings Built Before 2000, by Building Activity	18
Chart 2.7:	K-12 Enrollment: 1990-2017	20
Chart 2.8:	Post-Secondary Enrollment (Millions of Students)	20
Table 2.9:	Food Sales and Services Centralization	27
Chart 2.10:	Government Space by Building Activity	29
Table 2.11:	Total Building Space by Level of Government and Building Activity (BSF)	30
Table 2.12:	January 2009 Scorecards of Federal Cabinet-level Departments	32
Chart 2.13:	Total Area of Commercial Buildings by Size Category	33
Chart 2.14:	Number of Commercial Buildings by Size Category	33
Table 2.15:	Total Square Footage by Age of Building	34
Chart 2.16:	Existing Space Constructed Before 2000	34
Chart 2.17:	Commercial Building Space by Age and Principal Building Activity	35
Table 2.18:	Energy Use Per Unit Area in California Commercial Buildings: 1970-2005	35
Chart 2.19:	Energy Expenditures in Commercial Buildings by State: 2006	36
Chart 2.20:	Annual Energy Expenditure by U.S. State, Commercial Buildings	38
Table 2.21:	Energy Efficiency Retrofit Challenges and Opportunities, by Market Niche	39
Table 2.22:	Direct and Indirect Benefits, from Studies	45
Table 3.1:	Smart Building Components	51
Chart 3.2:	Existing Commercial Floorspace with Popular Energy Efficiency Measures: 1999 & 2003 .	52
Chart 3.3:	Energy Efficiency Tools Implemented by Building Activity	53
Table 3.4:	Common Energy Efficiency Tools and Technologies, Organized by Cost	53
Chart 5.1:	U.S. ESCO Industry Annual Revenue for Energy Efficiency Retrofits: 1990-2013	64
Chart 5.2:	New Construction and Major Renovation (BSF), Total and Green Certified: 2008-2020	65
Chart 5.3:	New Construction and Major Renovation, Energy Star & LEED-EB Buildings: 2008-2020	65
Chart 5.4:	U.S. Commercial Building Space by Age and Activity	67
Chart 5.5:	Space that Could Benefit from Energy Efficiency Improvements by Building Activity	69
Chart 5.6:	Buildings that Would Benefit from Enhanced O&M: Cost to Launch and Annual Savings	70
Chart 5.7:	Buildings that Would Benefit from Enhanced O&M: Incremental Savings over 5 Years	71
Chart 5.8:	Buildings that Would Benefit from Major Energy Efficiency Upgrades, by Building Activity	73
Chart 5.9:	25% Growth in Major EE Upgrades to Renovate all Building Stock by 2030: 2009-2030	75
Chart 5.10:	Revenue Forecast for Enhanced O&M, by Building Activity & Manager: 2009-2013	79
Chart 5.11:	Revenue Forecast for Major Green Renovations, by Building Activity: 2009-2013	80

^{© 2009} Pike Research LLC. All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.

Section 10 SCOPE OF STUDY

Pike Research has prepared this report to provide participants at all levels of the U.S. commercial building energy efficiency retrofit market with a practical study of the market. Participants include manufacturers and vendors of hardware and software; providers of design, installation, service, education, and certification; building owners, builders, and advisors; policy makers and analysts. The major objective of this study is to determine the state of the industry and draw conclusions about the likely future growth of the market. The report provides a review of major market segments, demand drivers, market barriers, and opportunities. The report's purpose is not to provide an exhaustive technical or competitive assessment of the technologies and industries covered, but rather a strategic examination from an overall tactical business perspective. Pike Research strives to identify and examine new market segments to aid readers in the development of their business models. The forecast period extends through 2013.

SOURCES AND METHODOLOGY

Pike Research's industry analysts utilize a variety of research sources in preparing Research Reports. The key component of Pike Research's analysis is primary research gained from phone and in-person interviews with industry leaders including executives, engineers, and marketing professionals. Analysts are diligent in ensuring that they speak with representatives from every part of the value chain, including but not limited to technology companies, utilities and other service providers, industry associations, government agencies, and the investment community.

Additional analysis includes secondary research conducted by Pike Research's analysts and the firm's staff of research assistants. Where applicable, all secondary research sources are appropriately cited within this report.

These primary and secondary research sources, combined with the analyst's industry expertise, are synthesized into the qualitative and quantitative analysis presented in Pike Research's reports. Great care is taken in making sure that all analysis is well-supported by facts, but where the facts are unknown and assumptions must be made, analysts document their assumptions and are prepared to explain their methodology, both within the body of a report and in direct conversations with clients.

Pike Research is an independent market research firm whose goal is to present an objective, unbiased view of market opportunities within its coverage areas. The firm is not beholden to any special interests and is thus able to offer clear, actionable advice to help clients succeed in the industry, unfettered by technology hype, political agendas, or emotional factors that are inherent in cleantech markets.

© 2009 Pike Research LLC.

All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.

Published 2Q 2009

©2009 Pike Research LLC 1320 Pearl Street, Suite 300 Boulder, CO 80302 USA Tel: +1 303-459-4681 http://www.pikeresearch.com

This publication is provided by Pike Research LLC ("Pike"). This publication may be used only as expressly permitted by license from Pike and may not otherwise be reproduced, recorded, photocopied, distributed, displayed, modified, extracted, accessed or used without the express written permission of Pike. Notwithstanding the foregoing, Pike makes no claim to any Government data and other data obtained from public sources found in this publication (whether or not the owners of such data are noted in this publication). If you do not have a license from Pike covering this publication, please refrain from accessing or using this publication. Please contact Pike to obtain a license to this publication.

© 2009 Pike Research LLC.

All Rights Reserved. This publication may be used only as expressly permitted by license from Pike Research LLC and may not otherwise be accessed or used, without the express written permission of Pike Research LLC.